ADDENDUM NO. 2 NOVEMBER 19, 2024

PROJECT: FORT GRIFFIN SUD

WATER TREATMENT PLANT – EVAPORATION PONDS

BID DATE: DECEMBER 10, 2024 AT 1:30 PM

The following changes and/or additions shall be made to the Plans, Specifications, and Contract Documents for the above referenced project. Bidder shall acknowledge receipt of this Addendum by signing below and returning this Addendum with the Bid.

1) The pre-bid conference will be offered through Microsoft Teams with the following link:

Meeting ID: 229 225 949 850

Passcode: hLiJP3

Dial in by phone

+1 323-892-2486,,673965020# United States, Los Angeles

Phone conference ID: 673 965 020#

The pre-bid conference will begin at 10:00 a.m. on November 20, 2024. The agenda for the meeting is attached.

- 2) A geotechnical report for this project is attached to this addendum,
- 3) The bid opening for this contract will be moved to December 10, at 1:30 PM. The location will not change.

	Prepared by:
Bidder's Acknowledgment	JACOB MARTIN
	TBPE Firm No. 2448
Date	

INTEGRITY **EXCELLENCE** TRUST

PRE-BID MEETING

Owner: **Fort Griffin SUD**

Project: WTP – Evaporation Ponds

Date & Time: November 20, 2024 at 10:00 AM

Location: 1180 County Road 109, Albany, TX 76430

AGENDA

1) Introductions

a) Owner: Fort Griffin SUD

- i) Mark Gardenhire, General Manager
- ii) Tyler George, Field Manager
- b) Engineer: Jacob & Martin, LLC
 - i) Derek Turner, P.E. Design Engineer and Project Manager; adt@jacobmartin.com
 - ii) Chris Estes Construction Manager/Inspector; cestes@jacobmartin.com
- 2) Project Description:
 - a) This project consists of constructing evaporation ponds for a proposed water treatment plant facility.
- 3) Project Schedule:
 - a) Project Bid Date DECEMBER 10, 2024 AT 1:30 PM 1180 County Road 109, Albany, TX 76430
 - b) Project Award Date January 9, 2025 (projected)
 - c) Notice to Proceed Date March 19, 2025 (projected)
 - d) Project Completion Time 180 working days
- 4) Bidding Requirements:
 - a) 5% Bid Security
 - b) "Best Value" competitive bidding method See Invitation for Bids for criteria
- 5) Copies of Plans:
 - a) Download documents (PDF format) from the Jacob & Martin web site at no cost.
 - b) Order one set of paper copies at Jacob & Martin office, 1925 Fort Worth Highway, Weatherford, Texas 76086, PH: (817) 594-9880 for a non-refundable cost of \$100.00 (full size plans).
 - c) To be eligible to bid all Contractors must register with Jacob & Martin and purchase a set of Contract Documents.
- 6) Addendums:
 - a) Addendum No.1: Issued on November 12, 2024

INTEGRITY EXCELLENCE TRUST

- b) Addendum No. 2: Issued on November 19, 2024
- c) Addendum No.3: TBD (covering Pre-Bid Conference Discussions)
- 7) Inquiries and Communication:
 - a) Address all questions to Derek Turner, P.E., adt@jacobmartin.com
- 8) Discussion and Questions:
 - a) All items discussed in today's meeting may be issued to all Contractors through addenda by the Engineer.
 - b) Special topics:
 - i) Schedule and material lead times
- 9) Site Visit site will be made available after pre-bid meeting

otes:	

TBAE Firm #: BR 2261

JACOB | MARTIN 1508 Santa Fe Drive, Suite 203 Weatherford, Texas 76086

Attn: Mr. Derek Turner

P: [817] 594 9880

E: adt@jacobmartin.com

Re: Geotechnical Data Report

Proposed Evaporation Ponds

County Road 306
Breckenridge, Texas

Terracon Project Number: 95175017

Dear Mr. Turner:

This data report presents the results of our borings and laboratory test results for the planned evaporation ponds in Breckenridge Texas. This study was performed in general accordance with Terracon proposal number P95175017, dated on January 31, 2017.

Site Location and Project Description

ITEM	DESCRIPTION
Location	County Road 306 and Hancock Drive in Breckenridge, Texas (See Exhibit A-1, Appendix A) (Approximate GPS coordinates: 32.77246 N, 99.01863 W)
Existing improvements	None; vacant land
Current ground cover	Grass
Existing topography	Unknown
Evaporation Ponds	A 10-acre evaporation pond is planned on the 60-acre site. The pond will be have a depth of about 6 feet.

Field Exploration Description

Subsurface conditions were explored by drilling twelve borings to depths of about 9 to 10 feet at the approximate locations indicated on the attached Exhibit A-2. The borings were drilled on February 17, 2017. The test locations were established in the field by measuring from available reference features and estimating right angles and using a hand-held GPS unit. The boring

Terracon Consultants, Inc.

2501 East Loop 820 North Fort Worth, Texas 76118 P [817] 268 8600 F [817] 268 8602 terracon.com Registration No. F-3272

Geotechnical Data Report

Proposed Evaporation Ponds Breckenridge, Texas March 6, 2017 Terracon Project No. 95175017

locations should be considered accurate only to the degree implied by the methods employed to determine them.

The borings were performed using a truck-mounted drill rig. Samples of the soil encountered in the borings were obtained using push tube samplers and split-barrel samplers. The samples were tagged for identification, sealed to reduce moisture loss, and taken to the laboratory for further examination, testing, and classification. The consistency of bedrock was evaluated by the Texas Department of Transportation (TxDOT) cone penetration test. The boreholes were backfilled with soil cuttings upon completion of drilling.

Field logs of the borings were prepared by the drill crew. These logs include visual classifications of the materials encountered as well as interpretation of the subsurface conditions between samples. The boring logs included with this report represent the engineer's interpretation of the field logs and include modifications based on visual evaluation of the samples and laboratory test results. The boring logs are presented on the attached Exhibits A-3 through A-14. General notes to log terms and symbols are presented on Exhibit A-15.

Laboratory Testing

The boring logs and samples were reviewed by a geotechnical engineer who selected soil samples for testing. Tests were performed by technicians working under the direction of the engineer. A brief description of the tests performed follows.

Liquid and plastic limit tests (ASTM D4318), material passing a #200 mesh sieve (ASTM D 1140) and moisture content measurements (ASTM D2218) were made to aid in classifying the soils in accordance with the Unified Soil Classification System (USCS). The USCS is summarized on the attached Exhibit A-16. Strength and consistency of cohesive soils was measured by hand penetrometer tests, respectively. The results of the laboratory tests are presented on the attached boring logs.

Subsurface Conditions

The subsurface conditions generally consisted of lean clays, sandy lean clays, clayey sands and sandstone. Fat clays were present in the upper 3 to 4 feet in borings B-7 and B-9 and to a depth of 8 feet in boring B-12. Details of the subsurface conditions are shown on the attached logs. Groundwater was not encountered during drilling in the borings and they remained dry at completion.

Conditions encountered at the boring locations are indicated on the boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual.

Proposed Evaporation Ponds Breckenridge, Texas March 6, 2017 Terracon Project No. 95175017

Earthwork Construction Considerations

It is anticipated that most of excavations in the overburden soils for the proposed construction can be accomplished with conventional earthmoving equipment. In some areas, excavations will encounter sandstone layers and seams. The sandstone is hard and may be difficult to excavate. Excavations extending into the sandstone may require breaker hoes, trenchers and milling machines equipped with rock teeth. Line drilling can be used to control over break at the limits of the excavation. The sandstone may be very difficult to break down.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely,

Terracon Consultants, Ip

Texas Registration #3272

Mul Cold

Cheryl C. Pedraza, P.E.

Senior Project Manager

Tim G. Abranis., P.E.

Senior Engineer

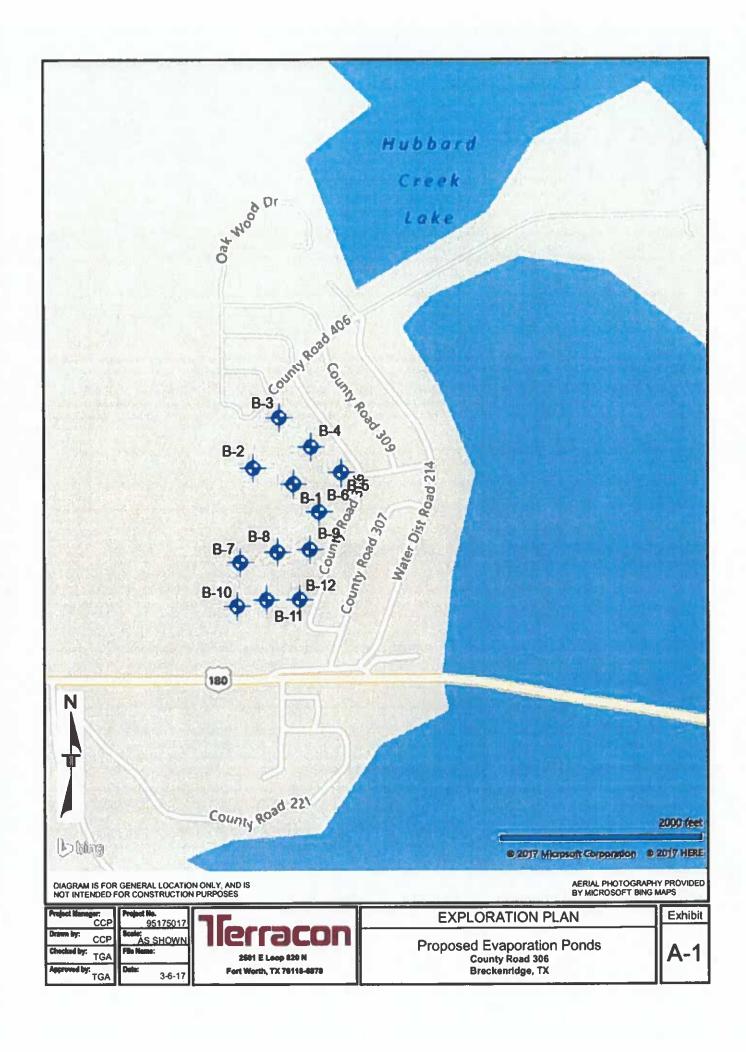


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS

TGA TGA

3-6-17

Fort Worth, TX 76118-6678

EXPLORATION PLAN

Proposed Evaporation Ponds
County Road 306
Breckenridge, TX

Exhibit

A-2

		BORING	L	OG	N	O. B-	-1						Page 1 of	1
PR	ROJECT: Proposed Evaporation Ponds			CLIE	IN	: Jaco Weat	b & Ma therfor	rtin, d, Te	, Ltd. exas					
SI	TE: County Road 306 Breckenridge, Texas													
g	LOCATION See Exhibit A-2			73	μ			STI	RENGTH	TEST	-		ATTERBERG LIMITS	S
GRAPHIC LOG	Latitude: 32.77365" Longitude: -99.01784"		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	100	RESULTS	TEST TYPE	COMPRESSIVE STRENGTH (1st)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
	LEAN CLAY (CL), with sand, reddish brown,	very stiff		T	10				8					T
				-	\$500 k	2.5	(HP)				12		32-14-18	70
	3.0				1	4.5+	(HP)							
	CLAYEY SAND (SC), trace gravel, trace calcade deposits, brown, dense	areous	5-		X		14-25 =39				6			48
	6.0 SANDY LEAN CLAY (CL), shaley, tan, hard 7.0 SANDSTONE, tan				X	16-20)-50/6"				9			
	8.9 Boring Terminated at 8.9 Feet		ì		×	50)/5"							
	Stratification lines are approximate. In-situ, the transition ma	y be gradual.					Hamme	er Type	e: Autom	atic				
Dry	cement Method: Auger Ionment Method: kfilled with auger cuttings	See Exhibit A-3 for of procedures. See Appendix B for procedures and additional See Appendix C for abbreviations.	descr itional	ription o Il data (i	f labo	oratory).	Notes:							
	WATER LEVEL OBSERVATIONS	7					Boring Sta	arted; :	2/17/2017	,	Borin	g Comp	oleted: 2/17/20	017
	No water encountered during drilling Dry upon completion of drilling	ller	G		C	חו	Drill Rig				Driller: StrataBore			
	ory aport component of similar	2501 E	2501 E Loop 820 N Fort Worth, TX Project No.: 95175017 Exhibit: A-3						7.7					

	E	BORING L	_C)G	NC	D. B-3					F	Page 1 of	1
\vdash	OJECT: Proposed Evaporation Ponds		1	CLIE	NT:	Jacob & Ma Weatherford	rtin, d, Te	Ltd.	П				
SI	TE: County Road 306 Breckenridge, Texas						V.534						
g	LOCATION See Exhibit A-2			- S	ш	***	STF	RENGTH	TEST	_		ATTERBERG LIMITS	8
GRAPHIC LOG	Latitude: 32.77547° Longitude: -99.0183°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	TEST TYPE	COMPRESSIVE STRENGTH (ISf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
11111	SANDY LEAN CLAY (CL), reddish brown, very	stiff		-0	S		-	8,,	V 2		-		-
						2.75 (HP)				18			
	SANDSTONE, tan		-		X	50/6"							
	3.0 LEAN CLAY (CL), shaley, with sand, tan and g	ray, hard											
	5.0					4.5+ (HP)				8		44-18-26	72
	SANDY LEAN CLAY (CL), shaley, tan		5 -		\bigvee	17-20-50/4"							
	6.0 SANDSTONE, tan		-	1	4		_						
			_			ED/ET							ļ
						50/5"							_
								i					
	9.6		-	1	X	28-50/1"					4		
	Boring Terminated at 9.6 Feet			П						200			1
Advar On Back													
_	Stratification lines are approximate. In-situ, the transition may	be gradual.	_	Ш		Hamm	er Type	a: Automa	atic				
Advar Dry Abane Bac	Auger Storment Method:	See Exhibit A-3 for de procedures. See Appendix B for de procedures and additione Appendix C for exabbreviations.	escri _l onal	ption of data (if	(labor								
	WATER LEVEL OBSERVATIONS	7				Boring St	arted:	2/17/2017		Borin	g Comi	pleted: 2/17/2	017
_	No water encountered during drilling	len	E			Drill Rig				+	r: Strat		
	Dry upon completion of drilling	2501 E Fort \	Loo	p 820 N	_	Project N	o.: 951	75017		Exhil	oit:	A-5	

		BORING L	.C)G	NC	D. B-4						Page 1 of	1
	ROJECT: Proposed Evaporation Pond TE: County Road 306	ls		CLIE	NT	: Jacob & Ma Weatherford	rtin, d, Te	Ltd. exas					
	Breckenridge, Texas					985	T		****			ATTERBERG LIMITS	(0
GRAPHIC LOG	LOCATION See Exhibit A-2 Latitude: 32,77467* Longitude: -99,01727*		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	TEST TYPE	COMPRESSIVE 22 STRENGTH DE	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pd)	LIMITS LL-PL-PI	PERCENT FINES
	LEAN CLAY (CL), brown, very stiff to hard		-			2.0 (HP)		0		16			
			-			4,5+ (HP)	uc	17.90	9	17	113		
	6.0		5-			4.5+ (HP)							
	FAT CLAY (CH), reddish brown, hard					4,5+ (HP)				13		52-18-34	91
	FAT CLAY (CH), shaley, reddish brown, ha	ard				4.5+ (HP)				11			
	Boring Terminated at 10 Feet		0-										
	Stratification lines are approximate. In-situ, the transition	n may be gradual.				Hamm	ег Тур	e: Autom	atic			10.00	
Di S Abar	incement Method: y Auger indonment Method: ackfilled with auger cuttings	See Exhibit A-3 for de procedures. See Appendix B for de procedures and additi See Appendix C for exabbreviations.	escri onal	iption o I data (i	lab any	oratory).							
	WATER LEVEL OBSERVATIONS	77				Boring S	tarted:	2/17/201	7	Borin	ng Com	pleted: 2/17/2	:017
B	No water encountered during drilling Dry upon completion of drilling	- llerr	_	_	_	Drill Rig				Drille	er: Stra	taBore	
	ory aport compount or aiming	2501 E Fort \	Loo	p 820 ! th, TX	1	Project N	lo.: 95	175017		Exhi	bit	A-6	

		BORING	LC	OG	NC). B- 5				unus tem		Page 1 of	1
	roposed Evaporation Pol	nds		CLIE	NT:	Jacob & Ma Weatherfor	artin, d, Te	Ltd.					
	reckenridge, Texas												
g LOCATION Se	e Exhibit A-2		-	PIS E	m.	L-	ST	RENGTH	TEST	· 😨	न	ATTERBERG LIMITS	SÃ
GRAPH	97" Longitude: -99.01629"		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	TEST TYPE	COMPRESSIVE STRENGTH (ISI)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pct)	LL-PL-PI	PERCENT FINES
SANDY I	EAN CLAY (CL), reddish brown	n, very stiff				0.75 (1/5)		0		40		00.40.45	
2.0					100	2.75 (HP)				12		28-13-15	51
SANDY I and tan,	LEAN CLAY (CL), with gravel, re hard	eddish brown				4.5+ (HP)							
4.0 POORLY	GRADED SAND (SP), poorly c	emented, with			X	16-17-23 N=40				4			
day laye	rs, tan, dense		5-										
					X	17-15-24 N=39				5			52
9.0						50/1"							
Stratification lin Advancement Method: Dry Auger WATER L No water en Dry upon coi	Terminated at 9.1 Feet												
Stratification lin	nes are approximate. In-situ, the transiti	on may be gradual.		Ш		Нати	er Type	a: Automa	atic				
Advancement Method: Ory Auger Abandonment Method: Backfilled with auger	cuttings	See Exhibit A-3 for procedures. See Appendix B for procedures and ad See Appendix C for abbreviations.	r descri ditional	iption ol I data (il	tabor any).								
WATER	EVEL OBSERVATIONS				_					T _a	_	-1-4- / 6/	
No water en	countered during drilling	7Ter	C =	1		Boring S	-	2/17/2017		-		pleted: 2/17/20	<i>)</i> 17
Dry upon coa	mpletion of drilling	2501	E Loo	p 820 N				75047		+	r: Strati	-	
		Fo	rt Wor	th, TX		Project I	vo.: 951	75017		Exhib	ot: /	A-7	

	E	ORING	L	OG	NC	D. B-7	200					Page 1 of	1
	OJECT: Proposed Evaporation Ponds			CLIE	NT	Jacob & Weather	Martin ford, To	, Ltd. exas					
SI ⁻	FE: County Road 306 Breckenridge, Texas												
g	LOCATION See Exhibit A-2			Z S	m		STI	RENGTH	TEST	J =		ATTERBERG LIMITS	S
GRAPHIC LOG	Latitude: 32.7715* Longitude: -99.01957*		DEPTH (FL)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	TEST TYPE	COMPRESSIVE STRENGTH (1st)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
	FAT CLAY (CH), with sand, dark brown, very st	iff to hard			A TOWN	3.5 (HP)				16		52-21-31	80
	3,0					4.5+ (HP)						
	SANDY LEAN CLAY (CL), with sand, trace grav calcareous deposits, reddish brown, very stiff	vel, with			M	9-12-17 N=29				13	0,-		
			5		M	12-50				10			73
	7.0 SANDSTONE, tan			1	Α	12-30				10			,,,
											×		
	10.0 Boring Terminated at 10 Feet		10			100/.5"	6						
	Stratification lines are approximate. In-situ, the transition may l	be gradual				Ha	ammer Typ	e: Autom	atic				
Dry	Auger Standard Standa	ee Exhibit A-3 for rocedures. ee Appendix B for rocedures and add ee Appendix C for obreviations.	desc	nption o al data (i	f labo f any)		tes	111					*******
										_			_
	WATER LEVEL OBSERVATIONS No water encountered during drilling	Ter		7		Borin	ng Started	2/17/201	7	+	964	pleted: 2/17/20)17
	Dry upon completion of drilling	2501	FLo	op 820 t						+	er: Strat		-200
		Fo	n Wo	rth, TX		Proje	ect No.: 95	175017		Exhil	bit:	A-9	

		BORING L	_C	OG	NC). B-8				<u>.</u>	[Page 1 of	1
PR	OJECT: Proposed Evaporation Ponds		<u></u> '	CLIE	NT:	Jacob & M Weatherfo	lartin, rd, Te	Ltd. xas					
SIT	E: County Road 306 Breckenridge, Texas												,
ဗ္ဗ	LOCATION See Exhibit A-2		<u> </u>	NS SNS	胀	-	STF	RENGTH	TEST	8	୍ଷ	ATTERBERG LIMITS	S S
GRAPHIC LOG	Latitude: 32.77178° Longitude: -99.01836°		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	<u> </u>	COMPRESSIVE STRENGTH (tsf)	8	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
₹			EPT	SER	됩	RESI	TEST TYPE	(SENCE)	STRAIN (%)	N A S	EIGY	LL-PL-PI	Ü
ō	DEPTH	'		§ 8	₩.	Ľ.	₽	SES	ST	ŏ	5		8.
	SANDY LEAN CLAY (CL), reddish brown, ha	ird			1								
M			-		CX.	4.5+ (HP)							
		16			18	4:0* (HF)						3	
			2		2								$oxed{oxed}$
					8	4.5+ (HP)				16			
	3.0		_			,	\bot					2*1	\vdash
	SANDSTONE, with clay seams, tan	APPLEASANCE TO STATE OF THE PARTY OF THE PAR			М	28-25-32							
			-	1	ΙXΙ	N=57							
					\mathbb{Z}		\bot						_
			5 -	-									
1111	6.0 LEAN CLAY (CL), shaley, with sand, tan and	l gray hard	-	-	$\left \cdot \right $		-						-
	LEAN COAT (OL), Shaley, with Sand, tall and	r gray, riaro			M	12-17-21				9		35-15-20	71
			-	1	Μ	N=38				9		35-15-20	l ′′
					- 1								
			2	-			+		_				-
					50								
			-	1		4.5+ (HP)				6		48-21-27	88
					1								
777	Boring Terminated at 10 Feet	1	0-							-30			
		-1-											
												3	
	Stratification lines are approximate. In-situ, the transition m	ay be gradual.	_			Hami	mer Typ	e: Autom	atic				_
	cement Method: Auger	See Exhibit A-3 for de procedures	scri	ption of	field	Notes						100	
		See Appendix 6 for de procedures and additi	escri	iption o	f labor	ratory							
	Jonment Method	See Appendix C for ea											
Ва	kfilled with auger cuttings	abbreviations.										<u> </u>	
	WATER LEVEL OBSERVATIONS	75		- 1	2000	Boring	Started:	2/17/201	7	Borin	ng Com	pleted: 2/17/2	017
	No water encountered during drilling	Jeu	t-			Orill Rig	3:	2		Dritte	er: Strat	aBore	
	Dry upon completion of drilling	2501 E	Loo			202.01	No.: 951	175017		Exhi	bit:	A-10	
		PUIC	TUI	94 IA		, roject	. 10 00		_				-

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

levels is not possible with short term water level observations.
--

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	(More that Density determine	NSITY OF COARSE-GRA n 50% retained on No. 200 ned by Standard Penetrati des gravels, sands and sli) sieve.) on Resistance	Consist visua	CONSISTENCY OF FIN (50% or more passing t ency determined by laborato I-manual procedures or star	he No. 200 sieve.) bry shear strength testing,	field e
RMS	Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength, Qu, tsf	Standard Penetration or N-Value Blows/Pt.	Ring Sampler Blows/Pt.
11	Very Loose	0 - 3	0 · 6	Very Soft	less than 0.25	0 - 1	< 3
GT	Loose	4 - 9	7 - 18	Soft	0.25 to 0.50	2 - 4	3 - 4
TREN	Medium Dense	10 - 29	19 - 58	Medium-Stiff	0.50 to 1.00	4 - 8	5 - 9
ST	Dense	30 - 50	59 - 98	Stiff	1.00 to 2.00	8 - 15	10 - 18
	Very Dense	> 50	≥ 99	Very Stiff	2.00 to 4.00	15 - 30	19 - 42
				Hard	> 4.00	> 30	> 42

RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s) of other constituents	Percent of Dry Weight	Major Component of Sample	Particle Size
Trace With Modifier	< 15 15 - 29 > 30	Boulders Cobbles Gravel Sand Silt or Clay	Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sleve (75mm to 4.75 mm) #4 to #200 sleve (4.75mm to 0.075mm Passing #200 sleve (0.075mm)

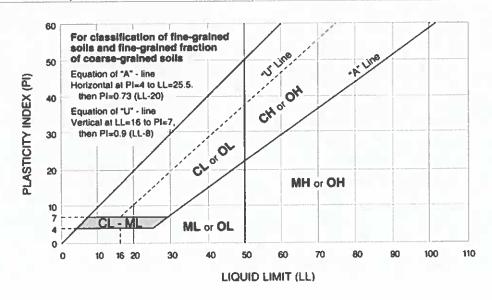
GRAIN SIZE TERMINOLOGY

PLASTICITY DESCRIPTION

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s)	Percent of	Term	Plasticity Index	
of other constituents	Dry Weight	Non-plastic	0	
Trace	< 5	Low	1 - 10	
With	5 - 12	Medium	11 - 30	
Modifier	> 12	High	> 30	

UNIFIED SOIL CLASSIFICATION SYSTEM


					Soil Classification	
Criteria for Assign	ning Group Symbols	s and Group Name	s Using Laboratory 1	Tests A	Group Symbol	Group Name ⁸
Coarse Grained Soils: More than 50% retained on No. 200 sieve	Gravels: More than 50% of coarse fraction retained on No. 4 sieve	Clean Gravels: Less than 5% fines ^C	Cu ≥ 4 and 1 ≤ Cc ≤ 3 E		GW	Well-graded gravel F
			Cu < 4 and/or 1 > Cc > 3 ^E		GP	Poorly graded gravel f
		Gravels with Fines: More than 12% fines ^c	Fines classify as ML or MH		GM	Silty gravel F,G,H
			Fines classify as CL or CH		GC	Clayey gravel F,G,H
	Sands: 50% or more of coarse fraction passes No. 4 sieve	Clean Sands: Less than 5% fines D	Cu ≥ 8 and 1 ≤ Cc ≤ 3 E		SW	Well-graded sand I
			Cu < 8 and/or 1 > Cc > 3 ^E		SP	Poorly graded sand
		Sands with Fines: More than 12% fines D	Fines classify as ML or MH		SM	Silty sand G,H,I
			Fines Classify as CL or CH		SC	Clayey sand G.H.I
Fine-Grained Soils: 50% or more passes the No. 200 sieve	Silts and Clays: Liquid limit less than 50	Inorganic:	PI > 7 and plots on or above "A" line J		CL	Lean clay K.L.M
			PI < 4 or plots below "A" line J		ML	Silt K,L,M
		Organic:	Liquid limit - oven dried	0.75	< 0.75 OL	Organic day K.L.M.N
			Liquid limit - not dried	< 0.75		Organic silt KL,MO
	Silts and Clays: Liquid limit 50 or more	Inorganic:	PI plots on or above "A" line		CH	Fat clay K.L.M
			Pl plots below "A" line		MH	Elastic Silt K,L,M
		Organic:	Liquid limit - oven dried	< 0.75	ОН	Organic clay K.L.M.P
			Liquid limit - not dried			Organic silt K.L.M.Q
Highly organic soils:	Primarily organic matter, dark in color, and organic odor					Peat

- A Based on the material passing the 3-in. (75-mm) sieve
- B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

E
$$Cu = D_{80}/D_{10}$$
 $Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}$

- F If soil contains ≥ 15% sand, add "with sand" to group name.
- ^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- ¹ If soil contains ≥ 15% gravel, add "with gravel" to group name.
- J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- N PI ≥ 4 and plots on or above "A" line.
- O PI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- ^a PI plots below "A" line.

